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Motivation
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Motivation

multi stacked strained structure
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Changes in the band structure and small

thickness of the strained layers

=⇒ Size Quantization

Solution: Schrödinger equation (SE)

with a full band description using the

k · p-method

For TCAD use, directly solving the SE

is too CPU intensive.

=⇒ Density Gradient Method (DGM)

Problem: unknown model parameters

e. g. effective band offsets.
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Motivation

Effective band offsets can be determined by:

• Measurement: The effective band offsets can be extracted by inverse

modeling of CV measurements based on the DGM [1].

=⇒ Uncertainty due to incomplete knowledge of the investigated devices

• Simulation: Based on the self-consistent solution of the SE and Poisson

equations, the effective band offsets can be extracted and the errors of

the DGM approximation can be investigated.

[1] C. Ni Chleirigh et al., “Extraction of band offsets in Strained Si/Strained SiGe on relaxed

SiGe dual-channel enhanced mobility structures” to be presented at SiGe Materials, Processing

and Devices Symposium, Hawai, 2004.
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Schrödinger/Poisson Solver for Strained Si and SiGe
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Schrödinger/Poisson Solver for Strained Si and SiGe

6 × 6 k · p SE for holes:
[

Ĥ

(

k, kz = −i
∂

∂z

)

+ Î · eV (z)

]

Fn
k(z) = En(k)Fn

k(z)

with k = (kx, ky), Ĥ = Ĥkp + Ĥso + Ĥstr and

V (z) = Ψ(z) + ∆Eav
v /e,

∆Eav
v [2]: “natural” valance band offset step of the Si/ SiGe heterostructure.

The quantum-mechanical charge density:

pqm(z) =
∑

n

1

(2π)2

∫

|Fn
k |

2f (En(k) + EF ) d2k , (1)

In contrast to nextnano3, a modified discretization scheme for the two-

dimensional k space is used in order to reduce the computation time and

to calculate (1) with high accuracy. Moreover, the CV characteristics for

mobility and band-offset extraction are determined by 1st order perturbation

theory. =⇒ About 30 times less CPU intensive than nextnano.

[2] C. G. van de Wall Phys. Rev. B, vol. 35, no. 15, pp. 8154–8165, 1987
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Schrödinger/Poisson Solver for Strained Si and SiGe

New interpolation method and grid
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=⇒ CPU-time gain = 25-30

C. Jungemann IWCE 2004 8



Schrödinger/Poisson Solver for Strained Si and SiGe

Band structure of first three subbands (ND = 5 × 1017 cm−3, VG = −2.5V,

φ = 0o) and the wave function of the first energy level.
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Schrödinger/Poisson Solver for Strained Si and SiGe

Hole density at room temperature for two gate biases evaluated by SE
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Density Gradient Model
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Density Gradient Model

Approximate quantum correction by the density gradient model (DGM):

pdg(z) = Nv exp





Ev + Φm + Λ − EF

kBT



 .

Here, Φm = (3/2)kBT log(m∗) and Λ is obtained by solving a differential equa-

tion:

Λ =
~2γ

12m







∇ · ∇
Φ̄ − EF

kBT
+

1

2

(

∇
Φ̄ − EF

kBT

)2






, with Φ̄ = Ev + Φm + Λ
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Density Gradient Model

What is new in strained material compared to relaxed material?
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Relaxed Si1−yGey

tSSi

∆Ev(y,~k||)

∆Ec(y)

Electrons:

∆Ec(y) known from literature.

Holes:

∆Ev(y,~k||) depends on ~k||

but ∆Ēv(y) independent from ~k||
required for TCAD (effective va-

lence band offsets)
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Extraction of the band offsets for TCAD
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Extraction of the band offsets for TCAD
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• Based on the CV data calculated by

SE, the valance band offsets have

been extracted by matching the CV

data calculated by DGM.

• The conduction band offsets are

fixed during the fitting procedure.

• Note that in this version the effec-

tive mass of Si for DGM was used

because no values are available for

strained Si and strained SiGe.
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Extraction of the band offsets for TCAD

Gate capacitance with different thickness of strained Si region (T = 300 K)
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Conclusion and Outlook
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Conclusion and Outlook

• Conclusions

– Efficient evaluation of low frequency CV characteristic for multi stacked

strained Si structures with a complete description of the valance band

structure is now possible.

– Accurate calculation of CV-characteristics for strained Si/SiGe dual

channel pMOSFETs based on Density Gradient Method with the cor-

responding extracted valance band offsets.

• Outlook

– Improvement of the state of art Density Gradient Model for holes in

strained Si and strained Si1−xGex based on our SE/PE solver.

– Extraction of the heterojunction valence band offsets and other param-

eters for wide range of Ge contents.

– Verification of the extracted results by comparison with measured CV-

data.
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