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Presentation Scope/Goals
• Industrial perspective
• Front-end process/device modeling
• Logic technology development focus

• How has TCAD contributed to 
technology development?

• What TCAD capabilities does industry 
need through the next decade?
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Outline
• Introduction

– Technology scaling
– Changing demands on TCAD

• Critical Modeling Needs
– Computational Materials Science
– Atomistic Modeling of Device Operation
– Multiscale Hierarchical Modeling

• Conclusions
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•Product die will exceed 1.7 billion transistors in 2005
•Physical gate length ~15nm before the end of this decade



6

Transistor Scaling – Past Decade
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• Continuum models used for the vast majority 
of TCAD process/device applications
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Nanotechnology Eras

Extending charge-based technology
to its ultimate limits; 22nm node and beyond

New channel materials, ballistic transport, barrier engineering
e.g. Ge FETs, III-V on Si, nanowire FETs, carbon nanotube FETs, …

Traditional scaling up to the 22nm node
High-k/metal gate, strained Si/SiGe, fully depleted UTB SOI, 
double gate MOS, trigate MOS, new silicides, FUSI, …

Novel technologies beyond charge-based
devices; beyond the roadmap

Spin logic, phase logic, molecular devices, photonics, …

Evolutionary CMOS

Revolutionary CMOS

Exotic Technologies
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Process/Device TCAD Industry Needs
Evolutionary CMOS

Revolutionary CMOS

Exotic Technologies

Materials
Extend traditional TCAD capabilities to next generations of devices, 
providing accurate models to enable technology optimization 
despite rapid introduction of new materials and structures

Physical device models and analysis to enable detailed evaluation 
of intrinsic device performance and impact of parasitics; strong
connection to fabrication processes/materials; enable selection 
and adoption of beyond-silicon devices 

Models for initial assessment of device and technology choices 
to enable exploration of radically new systems / architectures

Devices

Systems
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Outline
• Introduction

– Technology scaling
– Changing demands on TCAD

• Critical Modeling Needs
– Computational Materials Science
– Atomistic Modeling of Device Operation
– Multiscale Hierarchical Modeling

• Conclusions



11

Computational Materials Science
Example: dopant-defect diffusion

Diffusion in
tip and halo is 
influenced
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Continuum reaction-diffusion models provide a powerful and efficient 
capability that can incorporate atomistic dopant-defect energetics
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Boron-Interstitial diffusion
I migration BI migration
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Boron Diffusivity under Stress

Transition (NEB):

W. Windl et al.

Transition state energy:

M. Diebel, SISPAD 2003
Hop direction:

⇒ anisotropic diffusivity
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Structure
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Computational Materials Science

Where we need to be:
• Atomistic models for process effects extensible 

to new materials/interfaces
• Accurate enough to enable process 

optimization
• Handles bandgap/charge effects and large 

configuration spaces of real structures
• Strongly linked to process fabrication chemistry

• Value extends beyond front-end modeling 
needs to device and fabrication
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Outline
• Introduction

– Technology scaling
– Changing demands on TCAD

• Critical Modeling Needs
– Computational Materials Science
– Atomistic Modeling of Device Operation
– Multiscale Hierarchical Modeling

• Conclusions
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Atomistic Modeling of Device Operation

Where we are now:
• Drift-diffusion approach has been pushed far 

into the submicron MOS regime 
• Entering new phase of Evolutionary CMOS 

with expanding materials and structures

• New requirements for atomistic physical 
modeling in current technology development

• Many needs for detailed evaluation of 
revolutionary CMOS options



20

Strain Engineered 90nm Technology

30% IDSAT gain

PMOS

SiGeSiGe

Lateral Stress (MPa)

SiGe

Channel

0

0 0.1
0.1

-0.1
0

-200
-400

-600
-800

-1000



21

PMOS Drive Current Gain with Stress
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• Bandstructure calculations enable 
understanding of physical dependencies 
of PMOS stress response
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Phonon Mobility in Nanowires
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• Rigorous 1D Mobility 
calculation in 
nanowires
– Schrödinger-Poisson 

solution for 
wavefunctions

– Scattering/BTE solution 
– Compute mobility as a 

function of diameter
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Self-Consistent Monte Carlo and Quantum/Atomistic
Electrothermal Simulation of Nanotransistors
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Atomistic Modeling of Device Operation

Where we need to be:
• Continue to drive the development of 

atomistic models across the range of 
device options

• Strengthen the link to atomistic models of 
fabrication and materials properties 

• Go beyond point solutions to bring the 
resulting tools to the maturity needed for 
industrial application
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Outline
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– Technology scaling
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• Critical Modeling Needs
– Computational Materials Science
– Atomistic Modeling of Device Operation
– Multiscale Hierarchical Modeling

• Conclusions
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Multi-scale, Multi-phenomena Modeling
PDE solution – 108 atoms
continuum reaction-diffusion

Kinetic Monte Carlo – 106 atoms
classical atoms, migration barriers

Molecular Dynamics – 104 atoms
classical atoms, empirical potentials

Density Functional Theory – 102 atoms 
single-electron wavefunctions

structures

energies

2
Gate

Silicon substrate

1.2nm  SiO2

PolySi

Quantum Monte Carlo – 10 atoms 
many-electron wavefunctions

Hierarchical modeling approaches are well 
recognized as essential within modeling areas
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Hierarchical Modeling Systems

Systems

Circuits

Devices

Materials
Bulk/Interfaces

Atoms

Systems

Circuits

Devices

Materials
Bulk/Interfaces

Atoms

Ev
ol

ut
io

na
ry

R
evolutionary

Expanding
model

hierarchies



28

Outline
• Introduction

– Technology scaling
– Changing demands on TCAD

• Critical Modeling Needs
– Computational Materials Science
– Atomistic Modeling of Device Operation
– Multiscale Hierarchical Modeling

• Conclusions



29

Conclusions
• TCAD process and device modeling has a critical 

role in enabling future technology development
• Evolutionary CMOS

– Analysis and optimization of new materials and structures
• Revolutionary CMOS

– Detailed evaluation of the strengths and weaknesses of 
beyond-silicon devices

• Exotic Technologies
– Exploration of radically new systems and architectures

• Atomic-scale physical modeling as the foundation 
of a hierarchical modeling approach is the key to 
successfully meeting these diverse challenges
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