TCAD Process/Device Modeling Challenges and Opportunities for the Next Decade

Martin D. Giles

Technology CAD Department Intel Corporation

Acknowledgements

- S.Cea, T.Hoffmann, H.Kennel, P.Keys, R.Kotlyar, A.Lilak, T.Linton, P.Matagne, B.Obradovic, R.Shaheed, L.Shifren, M.Stettler, C.Weber, X.Wang
- Portland Technology Development
- Portland Quality and Reliability Engineering
- K. Goodson, W. Tsai, W. Windl

Presentation Scope/Goals

- Industrial perspective
- Front-end process/device modeling
- Logic technology development focus

- How has TCAD contributed to technology development?
- What TCAD capabilities does industry need through the next decade?

Outline

- Introduction
 - Technology scaling
 - Changing demands on TCAD
- Critical Modeling Needs
 - Computational Materials Science
 - Atomistic Modeling of Device Operation
 - Multiscale Hierarchical Modeling
- Conclusions

Transistor Scaling – Past Decade

Gate oxide scaling

Dopant engineering

1994 0.35µm Shallow Trench Isolation salicide poly STI source halo well drain STI

alicid

Gate

Spacer

 Continuum models used for the vast majority of TCAD process/device applications

Transistor Scaling – Next Decade

90nm Node

Nanotechnology Eras

Evolutionary CMOS

Traditional scaling up to the 22nm node

High-k/metal gate, strained Si/SiGe, fully depleted UTB SOI, double gate MOS, trigate MOS, new silicides, FUSI, ...

Revolutionary CMOS

Extending charge-based technology to its ultimate limits; 22nm node and beyond New channel materials, ballistic transport, barrier engineering e.g. Ge FETs, III-V on Si, nanowire FETs, carbon nanotube FETs,

Exotic Technologies

Novel technologies beyond charge-based devices; beyond the roadmap Spin logic, phase logic, molecular devices, photonics, ...

Process/Device TCAD Industry Needs

Evolutionary CMOS

Materials

Extend traditional TCAD capabilities to next generations of devices, providing accurate models to enable technology optimization despite rapid introduction of new materials and structures

Revolutionary CMOS Devices

Physical device models and analysis to enable detailed evaluation of intrinsic device performance and impact of parasitics; strong connection to fabrication processes/materials; enable selection and adoption of beyond-silicon devices

Exotic Technologies

Models for initial assessment of device and technology choices to enable exploration of radically new systems / architectures

Systems

Outline

- Introduction
 - Technology scaling
 - Changing demands on TCAD
- Critical Modeling Needs
 - **Computational Materials Science**
 - Atomistic Modeling of Device Operation
 - Multiscale Hierarchical Modeling
- Conclusions

Computational Materials Science Example: dopant-defect diffusion

Continuum reaction-diffusion models provide a powerful and efficient capability that can incorporate atomistic dopant-defect energetics

Boron-Interstitial diffusion

Jing Zhu, LLNL 1996

Boron Diffusivity under Stress

Transition (NEB):

Transition state energy:

 \Rightarrow anisotropic diffusivity

Interfaces Critical in Scaled Devices

DFT Calculation of Interface Structure

W. Windl, Ohio State University

Application: Si/SiO₂ vs. Ge/SiO₂

Structure (from EELS fit)

> Spatially resolved DOS

EELS (plus CB edge from DOS)

W. Windl, Ohio State University

Si/SiO₂ Ge/SiO₂ Find Ge/SiO₂ interface is atomically sharp with "text book" **band line-up**

Computational Materials Science

Where we need to be:

- Atomistic models for process effects extensible to new materials/interfaces
- Accurate enough to enable process optimization
- Handles bandgap/charge effects and large configuration spaces of real structures
- Strongly linked to process fabrication chemistry
- Value extends beyond front-end modeling needs to device and fabrication

Outline

- Introduction
 - Technology scaling
 - Changing demands on TCAD
- Critical Modeling Needs
 - **Computational Materials Science**
 - Atomistic Modeling of Device Operation
 - Multiscale Hierarchical Modeling
- Conclusions

Atomistic Modeling of Device Operation

Where we are now:

- Drift-diffusion approach has been pushed far into the submicron MOS regime
- Entering new phase of Evolutionary CMOS with expanding materials and structures
- New requirements for atomistic physical modeling in current technology development
- Many needs for detailed evaluation of revolutionary CMOS options

Strain Engineered 90nm Technology

PMOS Drive Current Gain with Stress

 Bandstructure calculations enable understanding of physical dependencies of PMOS stress response

Phonon Mobility in Nanowires

SiO2 cladding

- Rigorous 1D Mobility calculation in nanowires
 - Schrödinger-Poisson solution for wavefunctions
 - Scattering/BTE solution
 - Compute mobility as a function of diameter

22

Self-Consistent Monte Carlo and Quantum/Atomistic **Electrothermal Simulation of Nanotransistors**

Molecular Dynamics

 Phonon scattering experiments Input to BTE modeling

Split-Flux Phonon BTE / Monte Carlo

 Predict steady & transient phonon populations Link to electron transport

Compact Multi-scale Model

 Temperature response Sub-continuum predictability in TCAD

E. Pop, K. Goodson, R. Dutton Stanford University

Atomistic Modeling of Device Operation

Where we need to be:

- Continue to drive the development of atomistic models across the range of device options
- Strengthen the link to atomistic models of fabrication and materials properties
- Go beyond point solutions to bring the resulting tools to the maturity needed for industrial application

Outline

- Introduction
 - Technology scaling
 - Changing demands on TCAD
- Critical Modeling Needs
 - **Computational Materials Science**
 - Atomistic Modeling of Device Operation
 - Multiscale Hierarchical Modeling
- Conclusions

Multi-scale, Multi-phenomena Modeling

PolvSi

Silicon substrate

1.2nm SiO

PDE solution – 10⁸ atoms continuum reaction-diffusion

Kinetic Monte Carlo – 10⁶ atoms classical atoms, migration barriers

Molecular Dynamics – 10⁴ atoms classical atoms, empirical potentials Density Functional Theory – 10² at

Density Functional Theory – 10² atoms single-electron wavefunctions

Quantum Monte Carlo – 10 atoms many-electron wavefunctions

Hierarchical modeling approaches are well recognized as essential within modeling areas

Hierarchical Modeling Systems

Outline

- Introduction
 - Technology scaling
 - Changing demands on TCAD
- Critical Modeling Needs
 - **Computational Materials Science**
 - Atomistic Modeling of Device Operation
 - Multiscale Hierarchical Modeling
- Conclusions

Conclusions

- TCAD process and device modeling has a critical role in enabling future technology development
- Evolutionary CMOS
 - Analysis and optimization of new materials and structures
- Revolutionary CMOS
 - Detailed evaluation of the strengths and weaknesses of beyond-silicon devices
- Exotic Technologies
 - Exploration of radically new systems and architectures
- Atomic-scale physical modeling as the foundation of a hierarchical modeling approach is the key to successfully meeting these diverse challenges