Influence Of Ballistic Effects In Ultra-Small MOSFETs

J. SAINT MARTIN, V. AUBRY-FORTUNA, A. BOURNEL, P. DOLLFUS, S. GALDIN, C. CHASSAT

stmartin@ief.u-psud.fr

INSTITUT D'ÉLECTRONIQUE FONDAMENTALE

IEF, UMR CNRS 8622, Université Paris Sud,

Centre scientifique d'Orsay - Bât. 220F-91405 ORSAY cedex FRANCE

- Introduction
- Channel length and ballistic transport
- Bias dependence on ballisticity
- Ballisticity and long-channel effective mobility

- Channel length and ballistic transport
- Bias dependence on ballisticity
- Ballisticity and long-channel effective mobility

Transport in decanano MOSFET

<u>Quasi-ballistic transport:</u> electron mean free path is similar to L_{ch}

Monte Carlo simulation

• $B_{int} = \%$ of ballistic electrons at the drain-end • $B_{eff} = \frac{I_{on}}{I_{on with a ballistic channel}}$

- Channel length and ballistic transport
- Bias dependence on ballisticity
- Ballisticity and long-channel effective mobility

Studied devices

From quasi-stationary to quasi-ballistic

 \implies Transition for L_{ch} ≈ 50 nm in undoped channels

Ballisticity and channel length

 \Rightarrow B_{int} strongly increases for L_{ch} < 100 nm

Ballisticity and current

 \Rightarrow Gap between B_{int} and B_{eff} no more constant for L_{ch} < 30 nm

B_{eff}(**B**_{int}) in undoped channels

- Introduction
- Channel length and ballistic transport
- Bias dependence on ballisticity
- Ballisticity and long-channel effective mobility

\mathbf{B}_{int} as a function of \mathbf{V}_{DS} for different \mathbf{V}_{GS}

 \implies B_{int} decreases when V_{DS} increases

'Sta-bal' and 'bal-sta' architectures

 B_{int} (V_{DS}): 'sta-bal' vs. 'bal-sta'

 \Rightarrow B_{int} decrease is due to scatterings in the 2nd half of the channel

Higher phonon scattering rate > driving field

- Introduction
- Channel length and ballistic transport
- Bias dependence on ballisticity
- Ballisticity and long-channel effective mobility

Studied strained SGMOS

B_{int} more relevant than μ_{eff} to account for I_{on} ($B_{int}(I_{on})$ linear for $B_{int} \in [15\%, 30\%]$)

Conclusions

\checkmark Connections between B_{int} and:

- channel length
- strain
- bias
- \blacksquare High quasi ballistic influence for $B_{int} < \approx 20 \%$
- \blacksquare B_{int} more relevant than μ_{eff} to account for I_{on}

--- Role of MOS architecture (*cf.* paper)

