Simulations of sub-100nm strained Si MOSFETs with high-κ gate stacks

Lianfeng Yang, Jeremy Watling^{*}, Fikru Adamu-Lema, Asen Asenov and John Barker

Device Modelling Group, University of Glasgow Tel: +44-141-330 5343 Fax: +44-141-330 4907 Email: j.watling@elec.gla.ac.uk

10th International Workshop on Computational Electronics (IWCE-10)

24th - 27th October 2004

Outline

- Introduction
- Device structure
 - (Conventional and strained Si *n*-MOSFETs)
- Device Calibration
- > High- κ dielectrics
- Results and discussion
- Conclusions

Introduction

\succ High- κ dielectrics

- Scaling of MOSFETs beyond the 45nm technology node expected by 2010 (ITRS), requires extremely thin SiO₂ gate oxides (~0.7nm) resulting in intolerably high gate leakage.
- > Maximise gate capacitance:

$$C_{ox} = \frac{\mathcal{E}_{ox}}{t_{ox}}$$

The leading contenders at present are HfO_2 and Al_2O_3 . However, there is a fundamental drawback due to the resulting mobility degradation.

$$t_{high-\kappa} = \left(\frac{\kappa_{high-\kappa}}{\kappa_{ox}}\right) t_{SiO_2}$$

Strained Si

Has already demonstrated significant enhancement for CMOS applications.

Gate Leakage current density due to gate tunnelling

From ITRS 2003 edition

Mobility enhancement in strained Si

Our ensemble Monte Carlo simulator includes all relevant scattering mechanisms:

optical intervalley phonon, inelastic acoustic phonon, ionized impurity,

along with interface roughness scattering. The simulator has been thoroughly calibrated for bulk Si transport.

Monte-Carlo calculation of the low-field *in-* and *out-of-plane* electron mobilities in strained Si as a function of Ge content within the SiGe buffer; inset shows the *in* and *out-of-plane* directions.

Device Structure Evolution

Strained Si with high-k dielectrics

- IBM demonstrated the high performance of strained silicon (30% enhancement) with low leakage of high- κ insulators (1000× lower leakage) for maximum performance with minimum standby power
- Intel presented their high- κ on strained Si technology at IEDM 2003

Source: IBM (VLSI 2002)

Simulation of 67nm IBM Relaxed and Strained Si n-MOSFET

Comparison between *n*-type Strained Si and control Si MOSFETs:

- 67nm effective channel length
- Similar processing and the same doping conditions

In the strained Si MOSFET:

- 10nm tensile strained Si layer
- Strained Si on relaxed SiGe (Ge content: 15%)

K.Rim, et. al., Symposium on VLSI Technology 2001 http://www.research.ibm.com/resources/press/strainedsilicon/

Strained Si n-channel MOSFET Structure

Comparison between the *n*-type Strained Si and control Si MOSFETs:

- 67nm effective channel length
- Similar processing and doping conditions
- UNIVERSITY of GLASGOW

• Oxide thickness, $t_{ox} = 2.2$ nm (SiO₂)

For the strained Si MOSFET:

- 10nm strained Si layer thickness
- Strained Si on relaxed SiGe (Ge content: 15%)

SiGe *n*-MOSFET >35% drive current enhancement (70% high field mobility enhancement)

Device Calibration – Drift Diffusion

Drift-diffusion (MEDICI[™]) device simulations

- Concentration dependent, Caughy-Thomas and perpendicular field dependent mobility models
- Corrected Si/SiGe heterostructure parameters: band gap and band offset effective mass, DoS and permittivity[†]

Calibrated I_D - V_G characteristics of the 67nm *n*-type bulk Si and strained Si MOSFETs (experimental data from *Rim VLSI'01*)

^{*} L. Yang, *et al*, 'Si/SiGe Heterostructure Parameters for Device Simulations' to UNIVERSITYSemiconductor Science and Technology **19**, p. 1174-1182 (2004) ^{of} GLASGOW

Calibrated I_D - V_G characteristics for 67nm conventional Si and strained MOSFETs, comparison with experimental data of Rim.

Smoother interface for strained Si/SiO₂ interface.

of See L. Yang *et al*, Proceedings of the 5th European Workshop on Ultimate **GLASGOW** Integration of Silicon (ULIS04), p23-26, IMEC 2004

Problems associated with high- κ dielectrics

High-*k* dielectrics

Replace SiO₂

"Ideal" high- κ films: thermally stable, free from electron and interface traps, leakagefree, reliable and reproducible, etc.

Quantity/Dielectric	SiO ₂	Al ₂ O ₃	HfO ₂
\$ ⁰	3.90	12.53	22.00
ε [∞]	2.50	3.20	5.03
ω _{TO1} (meV)	55.60	48.18	12.40
$\omega_{\mathrm{TO2}}(\mathrm{meV})$	138.10	71.41	48.35
ω _{SO1} (meV)	57.10	53.10	16.70
$\omega_{SO2} (meV)$	140.70	82.33	50.60

ScalabilityLeakage

Fischetti, JAP'01

Ionic polarization

Electronic polarization $\propto 1/E_g$

UNIVERSITY

GLASGO

High-κ | High dielectric constant dielectrics: Small bandgap Highly polarized "soft" metal-oxygen bonds which screen external fields \rightarrow low energy lattice oscillation (soft - phonon energy)

Remote (SO) Phonon Scattering

Coupling strength between the inversion layer electrons and the soft optical (SO) phonons (from the LO modes of insulator) Fröhlich interaction

Ionic polarization Static \mathcal{E}_{ox}^{0} Electronic polarization Optical (high frequency) $\mathcal{E}_{ox}^{\infty}$ SiO₂ – small difference between \mathcal{E}_{ox}^{0} and $\mathcal{E}_{ox}^{\infty}$ High- κ – large difference between \mathcal{E}_{ox}^{0} and $\mathcal{E}_{ox}^{\infty}$

Strong SO phonon scattering degrades the inversion layer carrier mobility within the MOSFET with high- κ gate stacks.

 $\left| \tilde{\kappa} \omega_{SO} \right| \frac{1}{\varepsilon_{s}^{\infty} + \varepsilon_{sy}^{\infty}} - \frac{1}{\varepsilon_{s}^{\infty} + \varepsilon_{sy}^{0}} \right|$

Monte Carlo simulations of Si MOSFET with HfO₂

 I_D - V_G characteristics of 67nm *n*-type Si MOSFET, with and without soft-optical phonon scattering from the HfO₂ oxide.

Monte Carlo simulations of strained Si MOSFET with HfO₂

 I_D - V_G characteristics of 67nm *n*-type strained Si MOSFET with and without soft-optical phonon scattering from the HfO₂ oxide.

Observations

- We observe that those simulations which include softoptical phonon scattering exhibit a similar percentage reduction for both Si and strained Si *n*-MOSFETs at the same gate over drive $V_G - V_T = 1.0$ V.
- The degradation in the drive current is ~40-50% at $V_D=0.1$ V and ~25% at $V_D=1.2$ V.
- SO phonon scattering decreases at high-drain voltages as the 'Fröhlich' interaction decreases with energy.

Velocity profile along the channel

Average channel velocities for the 67nm *n*-type bulk and strained Si MOSFETs, with and without soft-optical phonon scattering from the HfO_2 gate stack.

Monte Carlo simulations of Si MOSFET, with AI_2O_3

 I_D - V_G characteristics of 67nm *n*-type Si MOSFET, with and without soft-optical phonon scattering, from the Al₂O₃ oxide.

Impact of high-κ on Strained Si

Conclusions

- We have investigated the impact on the performance degradation in sub 100nm *n*-MOSFETs due to soft-optical phonon scattering in the presence of high- κ dielectrics HfO₂ and Al₂O₃.
- A device current degradation of around 25% at V_G - V_T =1.0V and V_D =1.2V is observed for conventional and strained Si devices with a 2.2nm EOT HfO₂. Correspondingly a current degradation of around 10% is observed for conventional and strained Si devices with a 2.2nm EOT Al₂O₃.
- Our results indicate that the performance degradation associated with high- κ gate stack MOSFETs can be compensated by the introduction of strained Si channels.

•

The infancy of high- κ gate fabrication techniques means that overall performance degradation associated with high- κ gate dielectrics is expected to be worse than the predictions here.

