Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green's Function Formalism

Jing Guo¹, Supriyo Datta², M P Anantram³, and Mark Lundstrom² ¹Department of ECE, University of Florida, Gainesville, FL ²School of ECE, Purdue University, West Lafayette, IN ³NASA Ames Research Center, Moffett Field, CA

Introduction
NEGF Formalism
Ballistic CNTFETs
Summary

Introduction: carbon nanotubes

McEuen et al., IEEE Trans. Nanotech., 1, 78, 2002.

(see also: R. Saito, G. Dresselhaus, and M.S. Dresselhaus, *Physical Properties of Carbon Nanotubes*, Imperial College Press, London, 1998.)

Introduction: device performance

Javey, Guo, Farmer, Wang, Yenilmez, Gordon. Lundstrom, and Dai, Nano Lett., 2004

Outline

- 1. Introduction
- 2. NEGF Formalism
- 3. Ballistic CNTFETs
- 4. Summary

Nonequilibrium Green's Function (NEGF)

Datta, *Electronic Transport in Mesoscopic Systems*, Cambridge, 1995

Outline

- 1. Introduction
- 2. NEGF Formalism
- 3. Ballistic CNTFETs
- 4. Summary

CNTFETs: real-space basis (ballistic)

Lake et al., JAP, 81, 7845, 1997

CNTFETs: real-space results

CNTFETs: mode-space approach (ballistic)

The *q*th mode

 $H_{q} = \begin{bmatrix} u_{1} & b_{q} & & & \\ b_{q} & u_{2} & t & & \\ & t & u_{3} & O & & \\ & & O & O & b_{q} \\ & & & b_{q} & u_{N} \end{bmatrix}$

- Σ_{s} (1,1) and Σ_{D} (N,N) analytically computed
- Computational cost: O(N) real space O(m³N)

CNTFETs: mode-space results

CNTFETs: treatment of M/CNT contacts

Kienle et al, ab initio study of contacts in progress

CNTFETs: treatment of M/CNT contacts

Charge transfer in unit cell: Leonard et al., APL, 81, 4835, 2002

CNTFETs: 3D Poisson solver

Method of moments:

$$V(\overrightarrow{r}) = \int K(\overrightarrow{r} - \overrightarrow{r})\rho(\overrightarrow{r})d\overrightarrow{r}$$

Electrostatic kernel:

 $K(\overset{\omega}{r}-\overset{\omega}{r'})$ for 2 types of dielectrics available in Jackson, *Classical Electrodynamics, 1962*

Neophytou, Guo, and Lundstrom, 3D Electrostatics of CNTFETs, IWCE10 ¹³

CNTFETs: numerical techniques

- Non-linear Poisson
- Recursive algorithm for
 - $G(E) = [EI H \sum_{S} \sum_{D}]^{-1}$
- Gaussian quadrature for doing integral
- Parallel different bias points
- ~20min for full I-V of a 50-nm CNTFET

CNTFETs: theory vs. experiment

Javey, et al., *Nano Letters*, **4**, 1319, 2004

 $φ_{Bp}=0$ $d_{CNT} \sim 1.7$ nm $R_{S}=R_{D} \sim 1.7$ KΩ 15

Summary

A simulator for ballistic CNTFETs is developed

- atomistic treatment of the CNT
- 3D electrostatics
- phenomenological treatment of M/CNT contacts
- efficient numerical techniques

Theory is calibrated to experiment