

NEGF Method: Capabilities and Challenges

Supriyo Datta School of Electrical & Computer Engineering Purdue University

CNT Electronics

Effective Mass Equation

Finite Difference / Finite Element

Damle, Ren, Venugopal, Lundstrom ---> nanoMOS

Nanowire Electronics

Atomistic sp3d basis

Rahman, Wang, Ghosh, Klimeck, Lundstrom

Atomistic pz basis

lpha , eta are (2x2) matrices

Guo, Lundstrom

Nanowire/CNT Electronics

Atomistic

non-orthogonal basis

Siddiqui, Kienle, Ghosh, Klimeck

Molecular Electronics

Atomistic basis: Huckel / EHT / Gaussian

Ghosh, Rakshit,Liang, Zahid, Siddiqui, Golizadeh, Bevan, Kazmi

"Self-energy", Σ

"Self-energy", Σ

"Self-energy", Σ

$$\begin{bmatrix} E - \varepsilon_1 - \frac{t^2}{E - \varepsilon_2} \end{bmatrix}$$

"Self-energy", Σ

"Self-energy", Σ

Bridging Disciplines

Basis mixing: Ghosh, Liang, Kienle, Polizzi

C60 on Silicon

NEGF equations

$$G = (ES - H - \Sigma)^{-1}$$
$$A = i [G - G^+]$$
$$\Gamma = i [\Sigma - \Sigma^+]$$

 $\begin{bmatrix} G^{n} \end{bmatrix} = \begin{bmatrix} G\Gamma_{1}G^{+} \end{bmatrix} f_{1} + \begin{bmatrix} G\Gamma_{2}G^{+} \end{bmatrix} f_{2}$ $\tilde{I} = \frac{q}{h} Trace \Gamma_{1} \begin{bmatrix} f_{1} \left[A(E) \right] - \left[G^{n}(E) \right] \end{bmatrix}$ $= \frac{q}{h} Trace \Gamma_{2} \begin{bmatrix} f_{2} \left[A(E) \right] - \left[G^{n}(E) \right] \end{bmatrix}$

Matrices <--> Numbers

$$\begin{array}{l} \varepsilon & \longleftrightarrow & [H] \\ \gamma & \longleftrightarrow & [\Gamma], [\Sigma] \end{array} \end{array}$$

$$\mu \mathbf{1} \qquad \qquad \mathbf{1} \qquad \mathbf{1$$

Minimal Model

Nanowires / Nanotubes / Molecules

Drain current

Drain voltage

 $U = U_L + U_0(N - N_0)$

Method of moments: Jing Guo 3D Poisson solver: Eric Polizzi

Method of moments: Jing Guo 3D Poisson solver: Eric Polizzi

Correlations

-1.36

Which LDA ?

IP = E(N) - E(N-1)EA = E(N+1) - E(N)

Benzene

HOMO and LUMO

LDA

-1.36

1.64

LDA

-6.6

N vs. μ

N vs. μ : SCF Theory

 $U_i = U_0 \left(N - N_0 \right)$

Benzene

Self-interaction Correction

N one-electron levels

2^N many electron levels

Two choices

Works for $\Gamma \geq U$

2^N many electron levels

Works for $\Gamma << U$

Two choices

What is a contact?

What is a contact?

Energy has to be removed efficiently from the contacts: otherwise --> "hot" contacts

Venugopal, Lundstrom

Venugopal, Lundstrom

Other "contacts"

Other "contacts"

Molecular desorption?

Hot "contacts"

Molecular desorption?

Two choices

Works for $\Gamma << U$

Summary

Unified Model

Electronics & Sensing

www.nanohub.org Electrical Resistance: An Atomistic View, Nanotechnology <u>15</u>, 5433 (2004)

Transients? Strong correlations ? "Hot contacts" ?

Experiment vs. Theory

THEORY: Purdue Group (cond-mat/0403401) EXPT: Karlsruhe

Zahid, Paulsson, Ghosh