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Outline

• The ‘early days (i.e., when we used to ‘think’):

Science, not much Technology

– The basics of ‘warm electron’ transport: The Modena ‘standard model’

– The (oversold?) challenge of ‘hot carriers’: The ‘new standard model’

– Coulomb interactions

– Technology? Just calibration of moments methods...

• The future days of the ‘end of scaling’ (i.e., compute-and-do-not-think):

Technology, not much Science

– A little bit of Science: More Coulomb interactions

– New devices (PD, FD and UTB SOI; Double-gate FETs, ...)

– New materials (strained Si, Ge, III-Vs,...)

– Old materials from a new angle (‘new’ crystal orientation)

• Basic (scientific?) questions at the end of the road:

– Is ballistic transport a ‘pipedream’?

– Is the low-field mobility meaningful?

• Quantum transport: Science or fashion? Not for me to address...
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1966: The dawn of Monte Carlo

• Moments of the Boltzmann Transport Equation (DD, maybe Energy Transport) more than enough to

explain what little is needed about transport

• All device designers need to know is how to turn off the device

Performance-gain comes from scaling, no matter whether we understand or not

• Non-thermal, strong off-equilibrium transport a ‘scientific ’curiosity

• HCIS 1966: Monte Carlo (Kurosawa, imported from the A-bomb) and iterative methods (Budd)

• III-Vs main target (Malvern group): Small mass, obvious heating effects (e.g., Gunn effect), negative

differential mobility hard to model within DD

• Silicon: The Modena ‘standard model’ (1970’s)
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Hot carriers and the search for better models

• Impact-ionization and injection into SiO2 ‘practical’ problems (1980’s)

• Urbana: Full-band model, GaAs first, Si later

• The under-determined ‘rates’ problem:

– Assume electron-phonon rates proportional to final DOS (Hess)...

– Drift-velocity-vs.-field and ionization coefficients given...

– No unique solutions: High-el-ph-rate AND high-ii-rate equally valid as low-el-ph-rate AND low-ii-rate

– Theory (Urbana, IBM, Osaka, NTT) and experiments (IBM for ii) to the rescue

– A passing fad: Band-structure fudged models
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THE major achievement of MC methods: Old and new transport models
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We even had time to think!
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An example of ‘philosophy of Science’:
CB deformation potentials in Si and phonon scattering

• 1993: 30% overestimation of the correct

electron mobility in inversion layers

with MC calculations using

Ξu = 9.0 eV, Ξd = - 11.7 eV

from ‘selected’ experimental data

(angle- and LA/TA-averaged Ξave ≈ 10 eV)

• Published proposal to use Ξave ≈ 12 eV (duh!)

• 1996: Compute Ξu = 10.5 eV (bulk strained Si)

and determine Ξd = 1.1 eV

from elec and hole mobility

• Revisit intervalley deformation potentials

(from Brunetti ’79 back to Canali ’75)

• Explain both inversion-layer mobility

(SR-scattering remains the issue) and

mobility in bulk strained Si
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Determining Ξd

• Follow Herring and Vogt

• Fit simultaneously bulk electron and hole mobility
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Sub-0.1µm FETs and velocity overshoot

• First 0.1 µm nFETs in 1987/88

• Good news back then: Unlimited performance gain at smaller dimensions... A ‘pipedream’?

• Evidence for velocity overshoot ‘scant’: The source fixes the current in ‘long’ devices
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A first take on a controversial question: Is mobility important?

• Most semiconductors exhibit the same (calculated) performance

• Caused by:

– Low DOS → loss of conduction channels → loss of transconductance (that is, low inversion

capacitance)

– Similar DOS (and so, scattering rates) for hot carriers (1 eV or so)

– In-based materials an exception but at even shorter channel lengths...
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Coulomb interactions I: Effect on energy-distribution

• Some things happen ‘below threshold’:

– Substrate currents for VDS ≤ 1.1 V

– Gate currents for VDS ≤ 3.2 V

• Strong thermalization caused by short-range electron-electron scattering

– Strong high-energy tails above applied bias (in addition to the famous ‘thermal tails’)

– Even stronger than ‘ionization feedback’ (Bude)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
10–22

10–20

10–18

10–16

10–14

10–12

10–10

10–8

10–6

10–4

10–2

100

Lch = 180 nm
VDS = VGS = 1.8 V

Secondaries, Coulomb
No secondaries, Coulomb
Secondaries, no Coulomb
No secondaries, no Coulomb

Electron kinetic energy ( eV )

E
le

ct
ro

n 
en

er
gy

 d
is

tri
bu

tio
n 

( a
.u

. )

IWCE 10 Oct 2004 10



Towards the ‘end of scaling’. Coulomb interactions II: Effect on performance?

• Back to the present: Poor performance of aggressively-scaled devices

– Scanning the literature: Poor performance of ‘record-braking’ devices

– Off-line comments by Takagi-san (Toshiba, now at Univ. Tokyo)

– Discussed in 2000 (IBM)

– Emphasized by MIT (Lochtefeld and Antoniadis, IEEE EDL 22, 95 (2001))

D. A. Antoniadis, 2002 VLSI Symp, p. 2
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The ‘new scaling’

• Whatever the reason, we cannot scale forever and ‘scaling’ is now a different concept:

– New device designs: SOI, ground-plane, Double-gate, FINFETs,...

– New gate-insulators: HfO2, HfSiO4, rare-earth oxides, perovskites,...

– New semiconductors: Strained Si, Ge, maybe III-V...

– New contacts: metal gates, raised S/D, copper interconnects,...

– New schemes for on-chip operation: Dual (or multiple) threshold, dual (or multiple) supply voltage,...

• The Physics: Less ‘elegant’, more challenging

• A new ‘culture’ (dictated by panic?): Lots of devices, no basic experiments
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Long-range Coulomb interactions in small MOSFETs

• Source, drain, and gate regions are high-density electron gases

• S/D separation (i.e., channel length) is shrinking below the Debye length of the channel

• Gate needs to be 1 nm (or less!) away from the channel

• Collective ‘fluctuations’ in S/D perturb electrons in the channel (electron/bulk-plasmon interactions)

• Collective fluctuations in gate (interface plasmons) cause Coulomb drag
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Coulomb interactions and device speed: Theory

• S/D interactions thermalize carriers, build high-energy tails, increase momentum-loss indirectly

• Gate-induced Coulomb-drag subtracts momentum directly

• Lower transconductance, lower mobility
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Coulomb interactions and device speed:
Is it true?

• High-energy tails inferred from substrate currents at low energy (recently, Anil et al., Solid-State

Electron 47, 995 (2003))

• Mobility degradation seen experimentally (Toshiba, Udine, Lucent, recently, Lime et al.)

• If true, ballistic transport is unattainable

Lime et al., Solid-State Electron 47, 1147 (2003)

Recent drag experiments (Solomon) inconsistent with mobility-degradation
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Present ‘revival’ of MC simulations

• ‘New scaling’ forces us to look for ‘revolutionary’ (as opposite to ‘evolutionary’) paths

• Too many and to expensive to try them all:

– Strained-Si devices

– Double-gate devices and (electrostatic) scaling limits

– Ge MOSFETs

– III-V compound semiconductors and the ballistic limit

• Monte Carlo (as bearer of Physics) to the rescue

IWCE 10 Oct 2004 16



Strained Si devices

• Not quite what promised by the mobility-boost, but still an advantage to SS...

• Recent DAMOCLES simulations (Kumar) show ≈ 30% Ion-boost persists down to 20 nm

(Cai et al., IEDM 2004)
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Double-gate devices: Scaling Si

• Good electrostatic behavior down to 10 nm

• Surface-roughness/transport in thin Si are issues

• Quantum effects a concern (hard to model as well...)
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Ge-based FETs

• Not quite what promised by the mobility-boost, but still an advantage to (111) Ge...

• Leakage due to band-to-band tunneling a potentially lethal problem
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Double-gate devices: Si vs. Ge

• Not quite what promised by the mobility-boost, but still an advantage to (111) Ge...
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Effective mobility in nFET: Si vs. (111) Ge

1012 10132 3 4 5 6 7 8 9

103

3

4

5

6

7

8

9

2

3

4

(100)–surface, [100]–direction
(111)–surface, [110]–direction

300 K

Ge
no SR

with SR
Si

no SR

with SR

ELECTRON DENSITY IN THE CHANNEL (cm–2)

E
LE

C
TR

O
N

 M
O

B
IL

IT
Y

 (c
m

2 /V
s)

1011 1012 10132 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9
10–2

10–1

100

2

3

4
5
6
7
8
9

2

3

4
5
6
7
8
9

L (unprimed)

X

L (primed)

Γ

line: E0

dash: E1

dotted: E2

S
U

B
B

A
N

D
 M

IN
IM

A
 (e

V
)

1011 1012 10132 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9
10–6

10–4

10–2

100

S
U

B
B

A
N

D
 O

C
C

U
P

A
TI

O
N

1011 1012 10132 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

102

103

5
6
7
8
9

2

3

4
5
6
7
8
9

2

3

4

L (unprimed)
Xmy=mt
Xmx=mt
Lmy=mt (primed)
Lmx=mt (primed)
Γ
Total

ELECTRON DENSITY (cm–2)
E

LE
C

TR
O

N
 M

O
B

IL
IT

Y
 (c

m
2 /V

s)

IWCE 10 Oct 2004 21



‘Fast’ materials and ballistic transport

• Simulated small nFETs on various:

materials: As in 1991, but shorter

• III-V semiconductors ‘choke’

• Confirmed by ballistic 2D

quantum simulations (QDAME)
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Si 7.5 nm DGFET with QDAME (DGFET)

§gate current undermines
SS; could have been
80 mV/DEC

§TINV = 1.87 nm
§CV/I = 0.105 psec
§Vdd = 0.5 V
§VT = -0.30 V → +0.15 V

φms



InP 7.5 nm DGFET with QDAME (DGFET-InP)

§poor current drive, but also
reduced capacitance (DOS)
yields same (!) CV/I
§TINV = 2.82 nm
§CV/I = 0.100 psec
§Vdd = 0.5 V
§VT = -0.55 V → +0.15 V

φms



‘Fast’ materials and ballistic transport

• Scattering-dominated regime:

– Need small conductivity mass (large velocity)

– Need small DOS mass (weak scattering)

• Approaching the ballistic limit:

– Need small conductivity mass (large velocity)

– Need large DOS mass (many conduction channels)

– Ge – (110) better than (111) in the ballistic limit – a good compromise:

∗ small conductivity masses

∗ many quasi-degenerate valleys to boost DOS mass

∗ if only the small gap weren’t a problem!

• Self-consistency transport-Poisson of utmost importance!
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Basic questions on semiclassical transport

• Is ballistic transport achievable?

Probably not: Coulomb interactions always present. Maybe gate-screening could help...

• Does the low-field mobility matter?

Probably not: In small devices a large DOS mass may help.
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Ion is not the whole story, of course...

• Low-field mobility also determines switching speed

• Both Ion (or gm) and µ depend on scattering: Correlated only when scattering-dominated
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A ‘sad’ conclusion: Should we trust theory?

• A depressing example: We cannot explain the mobility-boost in biaxially stressed (tensile) Si nFETs

• Even more depressing: Nobody cares!

We (i.e., the system?) reward activities on ‘record breaking’ devices

We discourage ‘thinking’ and basic experimentation... No time left to ‘think’
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Outline/Conclusions

• The ‘early days (i.e., when we used to ‘think’):

Science, not much Technology

– The basics of ‘warm electron’ transport: The Modena ‘standard model’

– The (oversold?) challenge of ‘hot carriers’: The ‘new standard model’

– Coulomb interactions

– Technology? Just calibration of moments methods...

• The future days of the ‘end of scaling’ (i.e., compute-and-do-not-think):

Technology, not much Science

– A little bit of Science: More Coulomb interactions

– New devices (PD, FD and UTB SOI; Double-gate FETs, ...)

– New materials (strained Si, Ge, III-Vs,...)

– Old materials from a new angle (‘new’ crystal orientation)

• Basic (scientific?) questions at the end of the road:

– Is ballistic transport a ‘pipedream’?

– Is the low-field mobility meaningful?

• Quantum transport: Science or fashion? Not for me to address...
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