Numerical Investigation of a Molecular Switch Based on Conformational Change, with the Inclusion of Contacts

M. Girlanda, I. Cacelli

Dipartimento di Chimica e Chimica Industriale – Universita' degli Studi di Pisa Via Caruso, I-56122, Pisa, Italy.

A. Ferretti

Istituto per i Processi Chimico Fisici del CNR Via G. Moruzzi, I-56124 Pisa, Italy

M. Macucci

Dipartimento di Ingegneria dell'Informazione – Universita' degli Studi di Pisa

Via Caruso, I-56122, Pisa, Italy.

Implementing switch functionality at the molecular scale

Modulation of transport properties via field effect

As discussed by Damle, Rakshit, Paulsson and Datta [IEEE Trans. on Nanotechnology 1, 145 (2002)] controlling the current through a molecular field effect device poses the same challenges as in the case of nanoscale MOS devices, with the only advantage of a reduced permittivity with respect to that of silicon.

To be effective, a lateral control gate electrode should be separated from the molecule by a distance smaller than the separation between the source and drain electrodes between which the molecule is connected (usually about 1 nm).

Modulation of transport properties via conformational changes

Molecules, however, have a further degree of freedom with respect to bulk silicon: their conformation can be changed and this may lead to a significant variation of their transport properties.

We investigate how a transverse electric field can act upon the mutual angular position of molecular fragments and how this affects the energy barrier for electron transport.

Model and initial molecular prototypes

Longitudinal conduction is controlled as a function of the transverse electric field by the molecular switch included in a longer conductive chain contacted to a pair of metallic electrodes

Action of a transverse electric field on a model molecule

X1, X2, Y1, Y2 electron-acceptor (or donor) groups

Pyridine based molecules

Fp (90) ~ 6 V/nm

exceeds by far the threshold for dielectric breakdown in commonly used materials

Electron transfer simulation

In order to analyze the effect of relative rotation of the molecular fragments, we compute the bistability properties of the molecule, based on the polarization response to a longitudinal electrical field: the molecule is considered to be globally negative, with the presence of an excess electron that moves from one end to the other as a result of the external field.

The longitudinal bias can be simulated with a spatially constant electric field

Bistable behavior

driven cell polarization

0.5

-1

-0.5

For a molecule:

Electron occupancies of the two fragments (σ_1 and σ_2) are computed from the integration of the electron densities (r) over the two regions

0

driver cell polarization

0.5

1

Polarization:

e

Model molecule

Università degli Studi di Pisa

Computational details

- Geometry optimization of the molecular anion at the DFT (B3LYP) level in the presence of a perpendicular Electric Field FP
- Large basis sets for C, H, N and S
- Effective core potential for Au
- Geometry constraint arise from the presence of the contacts
- Mulliken population analysis from Hartree-Fock wave functions

Constrains arising from the contacts

S Hollow on a 3-atom gold cluster

Au₃S- units frozen to the values optimized for F_P=0

Effect of the transverse electric field

F_P=0.51 V/nm

HOMO orbital for planar and orthogonal conformation

Response analysis

Conclusions

- We have investigated the behavior of a molecular structure based on two aromatic rings, connected to gold contacts, in response to a transverse electric field
- Relative rotation of the two rings to an orthogonal configuration is achieved for a transverse field that is large, but in principle achievable in an experiment
- The variation of the intramolecular barrier is analyzed by looking at the response of the electron density to a longitudinal electric field
- Future work also includes a detailed evaluation of the conductance of the structure as a function of the transverse electric field

