

Search for Optimum and Scalable COSMOS

Savas Kaya and Ahmad Al-Ahmadi

School of EE&CS Russ College of Eng & Tech e-mail: kaya@ohio.edu

Outline

Motivation

- □ Limitations of Conventional Static CMOS
- □ Technology Base
- COSMOS Architecture
- COSMOS Device Operation
- Scaling & Optimization
- Conclusions

Motivation

Vertical + Orthogonal CMOS integration : COSMOS

- □ Stack two MOSFETs under a common gate
 - Eliminate the area required for pMOS
- □ Improve only hole mobility by using strained SiGe channel
 - pMOS transconductance equal to nMOS
- Reduce parasitics due to wiring and isolating the sub-nets

Technology Base

Strained Si/SiGe layers

Built-in strain traps more carriers and increases mobility

- Equal+high electron and hole mobilities (Jung *et al.*,p.460,EDL'03)
- Higher Ge%, more the improvements
- SOI (silicon-on-Insulator) substrates
 - active areas on buried oxide (BOX) layer

Outline

- Motivation
- COSMOS Architecture
 - □ Layer structure
- COSMOS Devices
- Scaling & Optimization
- Conclusions

COSMOS Structure

- Single common gate: mid-gap metal or poly-SiGe
 - Must be able to tune for set a symmetric threshold
- Ultra-thin channels: 2-6nm to control threshold/leakage
 - □ Strained $Si_{1-x}Ge_x$ for holes (x≥0.3)
 - Strained or relaxed Si for electrons
- Substrate: SOI mandatory for COSMOS isolation

COSMOS Structure - 3D View I

Single gate stack: mid-gap metal or poly-SiGe

□ Must be engineered for a symmetric threshold

COSMOS Structure - 3D View II

- Conventional self-aligned contacts
 - □ Doped S/D contacts: p- (blue) or n- (red) type
- Inter-dependence between gate dimensions:

Outline

- Motivation
- COSMOS Architecture
- COSMOS Devices
 - □ **Operation**
 - □ I-V Characteristics
 - □ Logic Gates
- Scaling & Optimization
- Conclusions

COSMOS Gate Control

A single gate to control both channels

- □ High-mobility strained $Si_{1-x}Ge_x$ (x≥0.3) buried hole channel
 - High Ge% eliminates parallel conduction and improves mobility
 - Lowers the threshold voltage V_T
- Electrons are in a surface channel
 - May be relaxed or strained
- Requires fines tuning for symmetric operation

3D Characteristics: 40nm Device

- Symmetric operation
 - □ No QM corrections
 - Lower VT
 - Features in subthreshold operation
 - Related to p-i-n parasitic diode included in 3D

COSMOS Inverter

No additional processing

- □ Just isolate COSMOS layers and establish proper contacts
- □ Significantly shorter output metallization

3D TCAD Verification

Inverter operation verified in 3D

Applications

- Low power static CMOS:
 - □ Should outperform conventional devices in terms of speed
 - Multiple input circuit example: NOR gate
- Area tight designs :
 - **FPGA, Sensing/testing,** μ **power etc.** ?

COSMOS NOR Gate

Outline

- Motivation
- COSMOS Architecture
- COSMOS Devices
- Scaling & Optimization
 - Vertical Scaling
 - Lateral Scaling
 - Voltage Scaling
- Conclusions

Vertical Layer Design

- Structural parameters to set V_T for nMOS and pMOS concurrently
 - □ Design parameters:
 - Ge% in the strained channel: $0.3 \le x \le 0.7$
 - Thickness of the str.SiGe channel: t_{SiGe}≤5nm
 - Gate work-function: $\phi_{n-polySi} \leq \phi_{MS} \leq \phi_{p-polySi}$
 - Si cap thickness: t_{Si}≤5nm
 - SiO₂ equivalent thickness: t_{ox}≤2.5nm
 - Layer order: inverted SiGe/Si layers
- Main design issues:
 - Setting MOS thresholds
 - Symmetric operation
 - Preventing parasitic hole conduction

Nominal parameters: $\phi_{MS} = \phi_{Si} (midgap)$ $t_{SiGe} = 3nm$ $t_{Si}=2nm$ $t_{ox} = 1nm$

1D Design: Ge%

Ge% independently sets the pMOS threshold

- Symmetric operation for a 3nm strained SiGe channel
 - x=0.3 for midgap metal gate
 - x=0.7 requires V_T tuning via channel thickness or gate barrier
- Parasitic channel
 - Sufficient latitude for design

1D Design: Str. SiGe Thickness

- Str. SiGe layer thickness mainly influences the pMOS threshold
 - Sufficient latitude for design
 - Symmetric operation for
 - t_{SiGe}=1nm for 70% Ge
 - t_{SiGe}=4nm for 35% Ge
 - Parasitic channel buffer
 - ~0.2V for 70% Ge
 - ~0.45V for 35% Ge
 - The thicker SiGe the larger the buffer

Lateral Scaling

Unusual (complicated) scaling characteristics

- \Box for L_g <30nm, I_{DS} reduced and V_T grows
- Results from reciprocal coupling W/L ratios
- Scaling limit depends on total channel thickness

□ For t_{ch} =5nm, L≥20 nm appears to be reasonable

Voltage Scaling (1)

Significant (~μ**A) asymmetric static leakage**

 \Box Due to parasitic p-i-n diode turning ON for V_{drive} >1V

Voltage Scaling (2)

- Suitable for lowpower applications
 - Limited by static leakage and noise margin
- Figures of merit for 36nm COSMOS @ $C_L=1fF$, $|V_{DD}|=0.5V$ $\Box \tau_d \sim 150ps$
 - □ No loss of NM
 - □ I_{static} ~ 10 nA

Summary & Conclusions

- Described a novel CMOS architecture
 - $\Box \text{ COSMOS} \Rightarrow \text{Single gate symmetric CMOS}$
 - Suitable for low-power & area tight applications
- Used 3D simulations to verify operation
- Identified performance figures and applications
 - ±0.5V bipolar digital operation
 - ~100ns delays => GHz digital operation
 - Limited due to static leakage
- Different scaling behaviour
 - □ VT grows at smaller gate lengths
 - 20 nm gate length is achievable
 - □ Concerns for end-of-roadmap (10 nm) requirements.